Blog

Primer blog

23.07.2012 18:44

Hoy hemos lanzado nuestro nuevo blog. ¡Sigue atento! Te mantendremos informado. Puedes leer los nuevos mensajes de este blog a través del feed RSS.

Video fracciones Youtube

23.07.2012 13:36

<iframe width="420" height="315" src="http://www.youtube.com/embed/9zKLd1bjwIA" frameborder="0" allowfullscreen></iframe>

Numeros decimales.

23.07.2012 13:05

Origen

Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa la parte entera de la parte decimal. Si no hay enteros, colocamos 0 delante de la coma.

Foto 04

En ellos podemos distinguir:

Ubicación

La parte decimal tiene columnas de posición, determinadas por el denominador de cada fracción decimal:

Foto 05

- Los décimos (denominador 10), ocupan 1 lugar después de la coma.

- Los centésimos (denominador 100), ocupan 2 lugares después de la coma.

- Los milésimos (denominador 1 000), ocupan 3 lugares después de la coma, y así sucesivamente.

Como te habrás podido dar cuenta, en los números decimales los lugares se relacionan con la cantidad de ceros que tiene la potencia de 10 del denominador.

La última cifra del numerador de la fracción decimal debe ocupar la posición que indica el denominador; si no alcanzan las cifras dadas, se colocan ceros a la izquierda de ellas.

Por ejemplo:

 

El 8 debe escribirse en la tercera columna después de la coma, porque son milésimos. Como el 8 ocupa un lugar, completamos los décimos y centésimos con ceros. Así, nos queda: 0,008

Foto 07

 

Con lápiz y papel

Ahora, toma lápiz y papel, y sigue atentamente estas ideas...

Para escribir

Si nos dicen cuatro enteros, doce mil quinientos diecinueve millonésimos, escribiremos los enteros, la coma y luego la parte decimal, que está formada por 5 cifras, pero éstas deben ocupar 6 lugares. Entonces, pondremos un 0 en los décimos.

De este modo, nuestro ejemplo quedará escrito así:

4,012519

... Y leer

Para leer números decimales nos fijaremos en la parte entera y luego en la parte decimal. Si no hay enteros, contamos los lugares que ocupa la parte decimal y los relacionamos con la potencia de diez que tenga la misma cantidad de ceros.

Veamos estos ejemplos:

a) 0,0078

En este caso, la parte decimal ocupa 4 lugares y el denominador 10 000 tiene 4 ceros. Entonces, se lee setenta y ocho diezmilésimos.

b) 0,9

Aquí, la parte decimal ocupa 1 lugar, corresponde al denominador 10. Por lo tanto, leemos nueve décimos.

Si el número decimal tiene enteros, leemos el número seguido de la palabra "enteros" (o de la unidad de medida que sea), y luego se lee la parte decimal, como en los ejemplos anteriores.

Observemos:

42,025

Se lee cuarenta y dos enteros, veinticinco milésimos.

Fracciones Quinto basico.

23.07.2012 12:53

Concepto de fracción

Se ha dividido el rectángulo en cuatro partes iguales y se ha sacado un cuarto del rectángulo.

Números y fracciones-Foto89

El denominador indica la cantidad de partes en que se ha dividido el entero, en este caso 4, y el numerador, la cantidad de esas partes del entero que se han considerado, en este caso 1.

Lectura de una fracción

Si el denominador es un 2, la unidad fraccionaria es un medio; si es 3, un tercio; si es 4, un cuarto; si es 5, un quinto; si es 6, un sexto; si es un 7, un séptimo; si es 8, un octavo; si es 9, un noveno y si es 10, un décimo. A partir de 11 en adelante se añade al número la terminación avo: 11, un onceavo; 12, un doceavo.....29, un veintinueveavo...

Ejemplos:

Foto 94

 

 

Representación de fracciones

Se ha divido el entero en 6 partes iguales y se han pintado 4. La fracción representada por la parte pintada es: 4/6.

Números y fracciones-Foto90

Se ha divido el entero en 10 partes iguales y se han pintado 6. La fracción representada por la parte pintada es: 6/10.

Números y fracciones-Foto91

Se ha divido el entero en 4 partes iguales y se han pintado 4. La fracción representada por la parte pintada es: 4/4.

Números y fracciones-Foto92

Se ha divido el entero en 8 partes iguales y se han pintado 3. La fracción representada por la parte pintada es: 3/8.

Números y fracciones-Foto93

 

Representación de fracciones en la recta numérica

En la recta se ha marcado con rojo 3/5:

Números y fracciones-Foto95

En la recta se ha marcado con rojo 6/8.

Números y fracciones-Foto96

Ubiquemos en la recta numérica las fracciones que se indican en cada caso:

Números y fracciones-Foto97

 

Fracción propia e impropia

Si el numerador y el denominador son iguales, la fracción vale una unidad entera.

Ejemplo:

2/2 = 1 10/10 = 1 29/29 = 1 54/54 = 1

Cuando el numerador es más pequeño que el denominador, la fracción vale menos que la unidad entera y se llama Números y fracciones-Foto98

.Ejemplos:

2/3 3/9 10/25 1/6 21/30

Cuando el numerador es igual o mayor que el denominador, la fracción vale igual o más que la unidad y se llama Números y fracciones-Foto90

Ejemplos:

8/3 10/4 18/5 25/10 43/8

 

Número mixto

Un número mixto se forma a partir de una fracción mayor que la unidad.

Un número mixto tiene una parte fraccionaria y una parte entera.

Ejemplo:

María Jesús se comió 3/2 de los chocolates.

Números y fracciones-Foto100

Es decir se comió un chocolate entero y medio más.

1 ½ de chocolate

Toda fracción impropia se puede convertir en un número mixto y viceversa.

Entonces:

Números y fracciones-Foto101

Fracción impropia y número mixto

Cinco tercios es lo mismo que decir cinco dividido en tres. Si hacemos la división, el resultado es 1 y sobran 2. Al convertir una fracción impropia en número mixto, el cuociente corresponde a la cantidad de enteros que se pueden formar, y el resto, a la cantidad de la fracción que queda, en este caso, dos tercios.

Convirtamos a número mixto las siguientes fracciones impropias:

Foto 103

¿Cómo podemos comprobar que 14/4 es igual que 3 2/4?

Decimos 3 x 4 + 2, es decir multiplicamos la cantidad de enteros por el denominador de la fracción y le agregamos el número del numerador. Esto se entiende mejor con una representación. Si observamos, podemos ver claramente que tenemos 3 enteros y 2 cuartos más (número mixto). Si ahora quisieramos saber cuántos cuartos son (fracción impropia), sólo bastaría con contar los cuartos, es decir: 3 x 4 (para calcular los enteros) y luego, agregamos 2 que corresponden a los dos cuartos más.

Foto 104

Otros ejemplos:

Foto 105
 

 

 

Fracciones equivalentes

Dos fracciones son equivalentes si representan la misma cantidad, es decir, tienen el mismo valor.

Hay dos chocolates iguales. Juan Pablo toma 6/8 de un chocolate y Pilar 3/4 del otro. ¿Quién tiene el pedazo más grande?

Ambos tienen el mismo pedazo, observemos:

Números y fracciones-Foto106

Para encontrar fracciones equivalentes, multiplicamos o dividimos el numerador y el denominador por un mismo número.

Números y fracciones-Foto107 Si multiplicamos el numerador y el denominador por 2, obtenemos: Números y fracciones-Foto108

Números y fracciones-Foto107Si multiplicamos el numerador y el denominador por 3, obtenemos: Números y fracciones-Foto109

Números y fracciones-Foto107 Si multiplicamos el numerador y el denominador por 4, obtenemos: Números y fracciones-Foto110

Entonces, Números y fracciones-Foto107, Números y fracciones-Foto108, Números y fracciones-Foto109, Números y fracciones-Foto110 ..., son fracciones equivalentes.

Otros ejemplos:

Números y fracciones-Foto111 Si dividimos el numerador y el denominador por 2, obtenemos: Números y fracciones-Foto112

Entonces 10/24 y 5/12 son fracciones equivalentes.

Números y fracciones-Foto113 Si dividimos el numerador y el denominador por 4, obtenemos: Números y fracciones-Foto114

Entonces 12/28 y 3/7 son fracciones equivalentes.

Números y fracciones-Foto115 Si dividimos el numerador y el denominador x 7, obtenemos: Números y fracciones-Foto116

Entonces 42/63 y 6/9 son fracciones equivalentes.

 

 

 

 

power point Quinto Básico

23.07.2012 12:51

Blog

Primer blog

23.07.2012 18:44
Hoy hemos lanzado nuestro nuevo blog. ¡Sigue atento! Te mantendremos informado. Puedes leer los nuevos mensajes de este blog a través del feed RSS.

Video fracciones Youtube

23.07.2012 13:36
<iframe width="420" height="315" src="http://www.youtube.com/embed/9zKLd1bjwIA" frameborder="0" allowfullscreen></iframe>

Numeros decimales.

23.07.2012 13:05
Origen Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa la parte entera de la parte decimal. Si no hay enteros, colocamos 0 delante de la coma. En ellos podemos distinguir: Ubicación La parte decimal tiene...

Fracciones Quinto basico.

23.07.2012 12:53
Concepto de fracción Se ha dividido el rectángulo en cuatro partes iguales y se ha sacado un cuarto del rectángulo. El denominador indica la cantidad de partes en que se ha dividido el entero, en este caso 4, y el numerador, la cantidad de esas partes del entero que se han considerado,...

power point Quinto Básico

23.07.2012 12:51

Etiquetas

La lista de etiquetas está vacía.